Structural, chemical, and thermoelectric properties of Bi₂Te₃ Peltier materials: bulk, thin film, and superlattices

Struktur, chemische Zusammensetzung und physikalische Eigenschaften von Bi₂Te₃ Peltier-Materialien: Volumenmaterialien, Dünnfilme und Übergitterstrukturen

Nicola Peranio

Correlations structure-chemical composition-thermoelectric properties

Transmission electron microscopy (TEM)

Bi₂Te₃ thin film and Bi₂Te₃/Bi₂(Te,Se)₃ superlattice structures

Bi₂(Te,Se)₃ and (Bi,Sb)₂Te₃ bulk

Thermoelectric properties, structural and chemical modulations (on the nanometer scale)

processing of bulk, thin films, superlattices

start

to verify

bulk

 chemical composition and extended crystal defects determine transport properties

- local variations in stoichiometry
- Character and density of extended crystal defects

superlattices

- chemical composition
- Epitaxial relations
- superlattice period
- thermoelectric properties

- Layer and interface roughness
- Extended crystal defects and interaction with superlattices

Transmission electron microscopy

Zeiss 912Ω TEM

•120 keV

CCD camera, video CCD camera
double-tilt holder, tilt range 60°/30°
energy-dispersive X-ray detector (EDX)
in-column OMEGA energy-filter

Bi₂Te₃ superlattice (12nm) in cross section

superlattice (ans)

- \rightarrow period 12.0 nm,
- → slight bending, amplitude 30 nm, wavelength 400 nm
- → threading dislocations with density of 2×10⁹cm⁻²
 → strong bending of the superlattice
 → SL disappeared in region A

High resolution images of the Bi₂Te₃ superlattice (12nm) in cross section

nns out of contrast

nns in contrast

superlattice (ans) \rightarrow period 12.0 nm \rightarrow no bending of the SL due to nns

structural modulation (nns)

- \rightarrow wavelength 10 nm and wave vector (1,0,10)
- \rightarrow no bending of the nns due to SL

Superlattices, artificial nanostructures (ans)

- 1. The superlattice structure (ans) can be imaged with strongly excited (0,0,1)-reflections.
- 2. The SL showed a period of 12.0 nm, bending with an amplitude of 30 nm and a wavelength of 400 nm, and threading dislocations with a density of 2×10^9 cm⁻².
- 3. The lattice thermal conductivity λ_{latt} decreases with decreasing SL period; therefore, superlattices yield an enhanced scattering of phonons.
- 4. A nns is superimposed to the structure, yielding a significant amount of stress in the samples, which was still not noticed and identified. The stress fields directly affect the transport coefficients, particularly the lattice thermal conductivity.
- 5. The thermopower and the electrical conductivity were found to be negatively correlated, depend on the charge carrier density, and no clear dependence of the two quantities on the microstructure could be found.

N. Peranio, O. Eibl, and J. Nurnus, "Structural and thermoelectric properties of epitaxially grown Bi₂Te₃ thin films and superlattices", J. Appl. Phys. 100, 114306 (2006).

Bi₂Te₃ bulk materials

Crystal structure: pseudo-hexagonal (a=0.44 nm, c=3.05 nm)

Peltron samples:

- n-type $Bi_2(Te_{0.91}Se_{0.09})_3$
- p-type $(Bi_{0.26}Sb_{0.74})_{1.98}(Te_{0.99}Se_{0.01})_{3.02}$
- synthesized by the Bridgman technique
- \bullet good texture, grain size 5 μm

Thermoelectric properties (300 K, in-plane):

D.M. Rowe, CRC Handbook of Thermoelectrics

sample	n/p	μ	σ	S	$S^2 \sigma$	λ	λ_{latt}	ZT
	10^{19}cm^{-3}	cm ² /Vs	1/Ωcm	$\mu V/K$	$\mu W/cmK^2$	W/mK	W/mK	
Bi ₂ Te ₃	2.00	160	513	227	26	1.73	1.53	0.46
$Bi_2(Te_{0.95}, Se_{0.05})_3$	4.00	150	901	-223	45	1.59	1.15	0.85
(Bi _{0.25} ,Sb _{0.75}) ₂ Te ₃	3.34	177	781	225	40	1.37	1.07	0.87

 \rightarrow reduction of lattice thermal conductivity due to **alloy scattering** of the phonons

 \rightarrow ZT enhancement

Knowledge about structure and chemical composition:

 \rightarrow Bi₂Te₃ shows a low lattice thermal conductivity λ_{latt} like a highly disordered material \rightarrow no experimental results specified what the structural disorder would be

 \rightarrow Bi₂Te₃ alloys are assumed to be solid solutions

Chemical analysis and Seebeck scanning microprobe (SPM)

N. Peranio and O. Eibl, "Quantitative EDX microanalysis of Bi₂Te₃ in the TEM", Phys. Status Solidi A 204, 3243 (2007).

nns and gliding dislocations in n-type Bi₂Te₃

Structure model for the natural nanostructure (nns)

- 1. A structural modulation (nns) is superimposed to the average structure and can be imaged using the $\{-1,0,5\}$ reflections.
- 2. The nns is of general character for Bi_2Te_3 materials: n-type and p-type bulk materials.
- 3. The origin of the nns is a pure structural modulation with wavelength of 10 nm, wave vector {1,0,10}, displacement vector <5,-5,1>, and an amplitude of 10 pm.
- 4. Rejected models for the nns: chemical modulations and ordered network of non basal plane dislocations

Thermoelectric properties and the nns

- 1. Bi_2Te_3 shows a λ_{latt} like highly disordered materials, the nns is a significant structural disorder. Lattice thermal conductivity should be decreased due to phonon scattering on the sinusoidal strain field of the nns.
- 2. The nns should yield a one-dimensional or zero-dimensional behaviour and anisotropic transport coefficients in the basal plane.
- 3. The number of nns and thereby the thermoelectric properties might be controlled by the thermal history of the sample.

N. Peranio and O. Eibl, "Structural modulations in Bi₂Te₃", J. Appl. Phys. 103, 024314 (2008)

- \rightarrow gliding at room temperature and without applied shear stresses
- \rightarrow an activation energy has thermally to be overcome to start and maintain motion
- \rightarrow basal plane as glide plane, b=<1,0,0>

Gliding dislocations in Bi₂Te₃

- 1. Dislocations in the basal plane with a high mobility at room temperature were found. The motion was induced by heating with a focused electron beam. External stresses were not applied.
- 2. Stereomicroscopy investigations combined with image simulations yielded basal plane dislocations with a density of 10⁹ cm⁻² and Burgers vectors <1,1,0>.
- 3. Phonon scattering on dislocations in Bi_2Te_3 reduces the lattice thermal conductivity.

N. Peranio and O.Eibl, "Gliding dislocations in Bi₂Te₃ materials", Phys. Status Solidi A 206, 42 (2009).

Summary

Expected:

- 1. Chemical analysis established in TEM and EPMA
- 2. Density and character of dislocations determined
- 3. Specimen preparation established, particularly thin films in cross section
- 4. Imaging of superlattices

Unexpected:

- 1. nns discovered and character explained: scattering center for phonons, role of the superlattice
- 2. Variations in stoichiometry: local changes of carrier density
- 3. Gliding dislocations at room temperature : scattering center for phonons
- 4. Bending of superlattices due to threading dislocations: carrier mobility

Outlook

SPP 1386:

"Nanostructure, excitations, and thermolectric properties of Bi2Te3-based nanomaterials"

Thank You !!!

Prof. O. Eibl

Michael Rössel

Irmgard Meissner

Leopoldo Molina-Luna

Dominique Eyidi Manuela Eber-Koyuncu Joachim Nurnus Harald Böttner Bernhard Degel Dorothea Adam Heinz Drexler Prof . Wenzel

Group of Prof. Kleiner